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This paper is concerned with the exact analysis method of the response process
of second order non-linear stochastic systems excited by Gaussian white noise.
A main feature is that a testing method is presented in this paper for the exact
steady state probability density of two dimensions to demonstrate the e!ectiveness
of the exact results. Examples are given to illustrate the applications of the analysis
method.
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1. INTRODUCTION

In the past 40 years the response of non-linear dynamic systems to stochastic
excitations has been extensively studied, and both exact and approximate methods
have been developed. When excitation is Gaussian white noise, the response of the
system is a Markovian process, and the probability density of the response process
is governed by the Fokker}Planck}Kolmogrov equation (the FPK equation).

In many areas of random mechanics, sometimes we need to analytically obtain
the exact probability densities of response processes for non-linear stochastic
systems or random oscillators. Recent results on the method of the exact FPK
equation may be found in references [1}5, 6]. However, in a general case, no exact
solution can be obtained and numerical methods must be used. Unfortunately, the
numerical methods for solving the FPK equation in higher dimensions are very
di$cult to perform [7, 8], and compared with the exact analytic results, there still
exist many di$culties in testing the accuracy of numerical results [5]. This
comparison is especially impossible for the joint probability density made up of
vector random processes of two or more dimension. Hence, this paper presents
general steps to overcome the di$culties. First, the exact probability density of the
response process of the non-linear stochastic system is solved in accordance with
0022-460X/00/101165#12 $35.00/0 ( 2000 Academic Press
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the method proposed in section 3. The main point of this method is to determine an
undetermined function appearing in the reduced FPK equation by solving the
Riccati equation. By using this method, an exact steady state solution of non-linear
stochastic system is obtainable. Second, a non-linear stochastic di!erential
equation is constructed in accordance with the analysis technique presented the in
section 4. If a known non-linear stochastic di!erential equation is the same with the
constructed non-linear stochastic di!erential equation, then the probability density
corresponding to the known non-linear stochastic system is exact. Examples are
given to illustrate the application of the analysis technique.

2. THE STEADY STATE FPK EQUATION

The following general non-linear system is considered:

xK#g(x, xR )"w(t), (1)

where w(t) represents a zero-mean Gaussian white noise with delta-type correlation
functions E[w(t)w(t#q)]"2n/d(q).

The stationary probability density p(y
1
, y

2
) of the system response is governed by

the reduced Fokker}Planck equation
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where y
1
"x(t) and y

2
"xR (t).

Let
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2
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)D, (3)

where c is a normalization constant, and f (y
1
, y

2
) is a stationary potential function.

Of course, expression (3) must be non-negative and normalizable or p(y
1
, y

2
) to be

a valid probability density
Since
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, (4)

g(y
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2
) and g(y

1
, y

2
)#g

1
(y

1
)/p(y

1
, y

2
) have the same probability density.

Substituting equation (3) into equation (2) yields
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where
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Since p(y
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)O0, equation (5) is reduced to
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3. THE EXACT ANALYSIS METHOD OF THE FPK EQUATION

If f (y
1
, y

2
) satis"es the following equation set:
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2
), (7)
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2
), (8)

then f (y
1
, y

2
) can satisfy the FPK equation (6) where h (y

1
, y

2
) is an undetermined

function. The above equations show balance of the probability potential function.
We can obtain from equation (7),
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fy
1
"P

y
2

0

gy
1
dy

2
!y

2
gy

1
(y

1
, 0)#y

2
fy

2
y
1
(y

1
, 0)#fy

1
(y

1
, 0)

#

1
n/ P

y
2

0
P

y
2

0

hy
1
(y

1
, y

2
) dy

2
dy

2
. (11)

Substituting equations (9) and (11) into equation (8) yields
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Assuming fy
2
(y

1
, 0)"0, equation (12) may be expressed as
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The function h (y
1
, y

2
) is selected in order to make the right-hand side of equation

(13) to be a function of y
1
. Hence, equation (13) may be further expressed as
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The above results are substituted into equation (15) yielding
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Substituting equation (17) into equation (10) and combining equation (14) yield
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where h
2
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1
) satis"es (the combination in equation (14))
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Solving h
2
(y

1
) is generally di$cult from equation (19). An alternative method is

given below.



NON-LINEAR STOCHASTIC SYSTEM 1169
By the assumption of the equation set
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the solution of equations (20) and (21) satisfy equation (19). Integrating equation
(20) yields
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Substituting equations (22) and (24) into equation (21), we obtain the following
Riccati equation:
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In general cases, equation (25) cannot be used to express elementary functions.
But, if h

2
(y

1
) is considered to be a function of y

1
, then the remaining terms of the

above equation, namely,
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must be a function of y
1
. If function h

2
(y

1
) exists in formula (26), we can solve

function h
2
(y

1
) from (25). The result is then substituted into equation (25).

If h
2
(y

1
) cannot be found, or substituting h

2
(y

1
) into equation (25) will not be

established, then it is shown that the conditions assumed in equations (20) and (21)
are not valid. In this case, other conditions must be assumed.

If equation (23) and h
2
(y

1
) satisfy the Riccati equation (25), the results of h

2
(y

1
)

are substituted into equation (18) and yield the following exact result.
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Example 1. Consider the following non-linear stochastic system:

xK#2b
xR
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xR 2
x
#
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, where a and b are two positive constants.
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Substituting the above equations into equation (15), we get
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Furthermore, it is desirable for h
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1
) to be derived from equation (26):
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equation (26) becomes ![6n//y2
1
](n!1)(n!4/3) to be only the function of y

1
.

The results obtained by substituting equations (30) and (31) into equation (25)
satisfy the Riccati equation (25).

Substituting equations (29) and (31) into equation (27), we get

f (y
1
, y

2
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1
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By making use of equation (3), the exact steady state probability density of the
non-linear system de"ned by equation (28) is given by

p (y
1
, y

2
)"c expC!

1
n/Aax2n#b

xR 2
x2n~2BD , (33)

where the normalization constant c can be solved as follows:

c"
Jabn
n2/

. (34)

When n"1, equation (28) becomes the following linear form:

xK#2bxR #
a
b
x"w(t). (35)

The exact probability density of the above equation is

p(x, xR )"c expC!
1

n/
(ax2#bxR 2)], (36)

the result is well-known.
It should be pointed out that Zhu [9] has obtained an equation of motion of the

exact stationary solutions of the relative general single-degree-of-freedom (s.d.o.f )
non-linear stochastic systems on the basis of results studied by Caughey and Ma
[10] as well as Young and Lin [11]. Here, we "rst show that equation (28) does not
belong to the stochastic di!erential equation of this type presented by Zhu [9].
Next, we show that some concrete non-linear stochastic systems are found to be
still very di$cult by means of this equation of motion presented by Zhu [9]. The
extent of the di$culties is no less than trying to "nd a solution for the FPK
equation [4]. The method provided by the paper can overcome these di$culties.

Example 2. Consider the following non-linear system:

xK#g
0
(x)#(1#x2)xR #

xxR 2
1#x2

"w(t). (37)
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1
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2
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1
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By combining the above equation and equation (15), we get
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1
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k
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By substituting equation (39) into equation (26), one can "nd h
2
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1
),

3
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2
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1
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1
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1
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1
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1
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1
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1
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.

When

h
2
(y

1
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y
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1
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equation (26) becomes 2n//(1#y2
1
)!10n/ y2

1
/(1#y2

1
)2 to be a function of y

1
.

The results obtained by substituting equations (38) and (40) into equation (25)
satisfy the Riccati equation (25).

Substituting equations (38) and (40) into equation (27) yields

f (y
1
, y

2
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1
)#
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1

2
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2
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y
1

0

g
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1
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1
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1
. (41)

When g
0
(x) in equation (37) possesses certain form, this equation may not belong

to the equation of motion of the exact stationary solutions of the relative general
s.d.o.f. non-linear stochastic system presented by Zhu [9].

Example 3. Consider the following non-linear oscillator [10]:
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By combining the above equation and equation (15), we get
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1
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k
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Under the above condition, equation (26) becomes
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When

h
2
(y

1
)"!n/

y
1

1#y2
1
/2

, (46)

equation (45) becomes n/ (1!2y2
1
)/(1#y2

1
/2)2 to be a function of y

1
.

The results obtained by substituting equations (43) and (46) into equation (25)
satisfy the Riccati equation.

By making use of equations (27), (43) and (46), we get

f (y
1
, y

2
)"lnCA1#

y2
1
2 B

b~n(
A1#

y2
2
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b
D , (47)

where b'2n/.
The above result is in complete accordance with the solution obtained by

Caughey and Ma [9].

4. A TESTING TECHNIQUE OF THE EXACT STEADY STATE PROBABILITY
DENSITY

We shall now turn our attention to the testing method of the above exact steady
state probability density, so that we recall equation (6) in section 2 as follows:
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Since g(y
1
, y

2
) is a function of f (y

1
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2
) in equation (48), equation (48) is a "rst

order linear di!erential equation with respect to g(y
1
, y

2
). Then an exact general

solution of equation (48) is
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1
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2
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2
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1
, y

2
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1
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1
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2
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2
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2
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Example 1. The exact result of equation (28), which is given in Equation (32) as

f (y
1
, y

2
)"ay2n

1
#b

y2
2

y2n~2
1

, (50)

where a and b are two positive constants, will be treated here.
By substituting the above equation into equation (49), we get
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1
, y

2
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2
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2

y
1

#
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b

y4n~3
1

!

n/(n!1)
b

y2n~3
1

. (51)

Namely, the non-linear stochastic system is

xK#2b
xR

x2n~2
!(n!1)

xR 2
x
#

an
b

x4n~3!
n/ (n!1)

b
x2n~3"w(t). (52)
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It is shown that equation (52) is in complete accordance with equation (28) in
section 3. Hence, the steady state probability density de"ned by equation (28) is
exact.

Example 2. The following exact results obtained by Caughey and Ma [10] are
tested, here the exact results are given by

f (y
1
, y

2
)"n/AP

H

0

h (u) du!lnH
YB, (53)

where >"y2
2
/2 presents the kinetic energy of the system, and H"H(y

1
, y

2
)

presents the total energy of the system. It is a "rst integration of the equation
yK
1
#Hy

1
/H

Y
"0.

By combining equations (49) and (53) yields

g (y
1
, y

2
)"n/Ch (H)H

Y
!

H
YY

H
Y
D y

2
!

1
H

Y

expCP
H

0

h(u) duD
]P y

2Ch (H)Hy
1
!

H>y
1

H
Y
D expC!P

H

0

h(u) duDH
Y
dy

2

"n/Ch (H)H
Y
!

H
YY

H
Y
D y

2
!

expCP
H

0

h(u) duD
H

Y
P [H

Y
h (H)Hy

1
!H>y

1
]

]expC!P
H

0

h(u) duD d> (54)

because

PH>y
1
expC!P

H

0

h (u) duDd>"Hy
1
expC!P

H

0

h (u) duD#P H
y
h(H)Hy

1

]expC!P
H

0

h(u) duD d> (55)

Substituting equation (55) into equation (54) yields

g(y
1
, y

2
)"n/y

2Ch (H)H
Y
!

H
YY

H
Y
D#

H>
1

H
Y

. (56)

The resulting non-linear system now becomes

xK#n/Ch(H)H
Y
!

H
YY

H
Y
DxR #

H
x

H
Y

"w(t). (57)
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It is shown that equation (57) is in complete accordance with equation (4) by
Caughey and Ma [10]. Hence, the result obtained by reference [10] is exact,
namely, the exact steady state probabilistic density of the above equation is shown
in the resulting equation

p(x, xR )"AH
Y
expC!P

H

0

h (u) duD . (58)
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5. CONCLUDING REMARKS

This paper is aimed at developing an analysis method of non-linear random
mechanics. In a general case, exact solutions for randomly excited non-linear
systems are di$cult to obtain mathematically, and there has been no uniform
analysis method for the response of a non-linear stochastic system. For this reason,
di!erent exact analysis methods have been developed for di!erent non-linear
stochastic systems. In this paper the main points are the following:

1. The most important aspect of this paper is to present a testing method for the
exact steady state probability density of two dimensions in order to demonstrate
the e!ectiveness of the exact results. Examples are given to show that this testing
method is e!ective. Moreover, this testing method can be generalized to the
non-linear stochastic system of higher dimensions.

2. By the proposed method, non-linear damping of various types can be treated.
3. This paper presents the exact analysis method, which when applied to a system

treated by Caughey and Ma, yields the same solution obtained by them.
4. If an undetermined function in a non-linear stochastic system can satisfy the

Riccati equation (25), then exact steady state solutions are obtainable.
5. When some concrete non-linear stochastic systems cannot satisfy the relative

general motion equation of the s.d.o.f. non-linear stochastic system presented by
Zhu [9], obtaining an exact solution is still possible. Of course Zhu's method can
also solve the equation that the method of this paper cannot solve.
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